Lipschitz Continuity of inf-Projections

نویسنده

  • Roger J.-B. Wets
چکیده

It is shown that local epi-sub-Lipschitz continuity of the function-valued mapping associated with a perturbed optimization problem yields the local Lipschitz continuity of the inf-projections (= marginal functions, = infimal functions). The use of the theorem is illustrated by considering perturbed nonlinear optimization problems with linear constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS

Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.

متن کامل

Radial Subgradient Descent

We present a subgradient method for minimizing non-smooth, non-Lipschitz convex optimization problems. The only structure assumed is that a strictly feasible point is known. We extend the work of Renegar [1] by taking a different perspective, leading to an algorithm which is conceptually more natural, has notably improved convergence rates, and for which the analysis is surprisingly simple. At ...

متن کامل

Lagrangian Manifolds , Viscosity Solutions and Maslov Index ∗

Let M be a Lagrangian manifold, let the 1-form pdx be globally exact on M and let S(x, p) be defined by dS = pdx on M. Let H(x, p) be convex in p for all x and vanish on M . Let V (x) = inf{S(x, p) : p such that (x, p) ∈ M}. Recent work in the literature has shown that (i) V is a viscosity solution of H(x, ∂V/∂x) = 0 provided V is locally Lipschitz, and (ii) V is locally Lipschitz outside the s...

متن کامل

Hölder continuity of a parametric variational inequality

‎In this paper‎, ‎we study the Hölder continuity of solution mapping to a parametric variational inequality‎. ‎At first‎, ‎recalling a real-valued gap function of the problem‎, ‎we discuss the Lipschitz continuity of the gap function‎. ‎Then under the strong monotonicity‎, ‎we establish the Hölder continuity of the single-valued solution mapping for the problem‎. ‎Finally‎, ‎we apply these resu...

متن کامل

Lipschitz Continuity of Mahalanobis Distances and Bilinear Forms

Many theoretical results in the machine learning domain stand only for functions that are Lipschitz continuous. Lipschitz continuity is a strong form of continuity that linearly bounds the variations of a function. In this paper, we derive tight Lipschitz constants for two families of metrics: Mahalanobis distances and bounded-space bilinear forms. To our knowledge , this is the first time the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003